/root/.blog

Enable watchdog on Raspberry PI

I'm using Raspbian Linux on 2 Pi's and I was successful in enabling the hardware watchdog after a lot of failed attempts because of wrong manuals on the net.

Edit the Raspbian boot config file to enable the watchdog

root@raspbianpi:~# vi /boot/config.txt

Add the following somewhere at the end:

dtparam=watchdog=on

Reboot your Pi

root@raspbianpi:~# reboot

After the reboot install the watchdog software

root@raspbianpi:~# apt install watchdog

Edit the watchdog configuration file

root@raspbianpi:~# vi /etc/watchdog.conf

and add:

watchdog-device = /dev/watchdog
watchdog-timeout = 15

Start and make sure the watchdog daemon starts at boot

root@raspbianpi:~# systemctl start watchdog
root@raspbianpi:~# systemctl enable watchdog

rook-ceph on k8s

DRAFT

  1. Add 3 worker nodes with a dedicated block device to use with ceph

  2. Install git

[root@test-vm1 ~]$ yum install -y git
  1. Install rook
[root@test-vm1 ~]$ su - k8sadm
[k8sadm@test-vm1 ~]$ git clone https://github.com/rook/rook.git
[k8sadm@test-vm1 ~]$ kubectl apply -f  rook/cluster/examples/kubernetes/ceph/operator.yaml
namespace/rook-ceph-system created
customresourcedefinition.apiextensions.k8s.io/clusters.ceph.rook.io created
customresourcedefinition.apiextensions.k8s.io/filesystems.ceph.rook.io created
customresourcedefinition.apiextensions.k8s.io/objectstores.ceph.rook.io created
customresourcedefinition.apiextensions.k8s.io/pools.ceph.rook.io created
customresourcedefinition.apiextensions.k8s.io/volumes.rook.io created
clusterrole.rbac.authorization.k8s.io/rook-ceph-cluster-mgmt created
role.rbac.authorization.k8s.io/rook-ceph-system created
clusterrole.rbac.authorization.k8s.io/rook-ceph-global created
serviceaccount/rook-ceph-system created
rolebinding.rbac.authorization.k8s.io/rook-ceph-system created
clusterrolebinding.rbac.authorization.k8s.io/rook-ceph-global created
deployment.apps/rook-ceph-operator created 
  1. Label these worker nodes as 'storage-node'
[k8sadm@test-vm1 ~]$ kubectl label node test-vm4.home.lcl role=storage-node
node/test-vm4.home.lcl labeled

[k8sadm@test-vm1 ~]$ kubectl label node test-vm5.home.lcl role=storage-node
node/test-vm5.home.lcl labeled

[k8sadm@test-vm1 ~]$ kubectl label node test-vm6.home.lcl role=storage-node
node/test-vm6.home.lcl labeled
  1. create a cluster config
[k8sadm@test-vm1 ~]$ vi cluster.yaml
apiVersion: v1
kind: Namespace
metadata:
  name: rook-ceph
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: rook-ceph-cluster
  namespace: rook-ceph
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: rook-ceph-cluster
  namespace: rook-ceph
rules:
- apiGroups: [""]
  resources: ["configmaps"]
  verbs: [ "get", "list", "watch", "create", "update", "delete" ]
---
# Allow the operator to create resources in this cluster's namespace
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: rook-ceph-cluster-mgmt
  namespace: rook-ceph
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: rook-ceph-cluster-mgmt
subjects:
- kind: ServiceAccount
  name: rook-ceph-system
  namespace: rook-ceph-system
---
# Allow the pods in this namespace to work with configmaps
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: rook-ceph-cluster
  namespace: rook-ceph
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: rook-ceph-cluster
subjects:
- kind: ServiceAccount
  name: rook-ceph-cluster
  namespace: rook-ceph
---
apiVersion: ceph.rook.io/v1beta1
kind: Cluster
metadata:
  name: rook-ceph
  namespace: rook-ceph
spec:
  dataDirHostPath: /var/lib/rook
  serviceAccount: rook-ceph-cluster
  mon:
    count: 3
    allowMultiplePerNode: true
  dashboard:
    enabled: true
  network:
    hostNetwork: false
  placement:
    all:
      nodeAffinity:
        requiredDuringSchedulingIgnoredDuringExecution:
          nodeSelectorTerms:
          - matchExpressions:
            - key: role
              operator: In
              values:
              - storage-node
      podAffinity:
      podAntiAffinity:
      tolerations:
      - key: storage-node
        operator: Exists
  resources:
  storage:
    useAllNodes: false
    useAllDevices: false
    deviceFilter:
    location:
    config:
      databaseSizeMB: "1024"
      journalSizeMB: "1024"
    nodes:
    - name: "test-vm4.home.lcl"
      devices:
      - name: "vdb"
    - name: "test-vm5.home.lcl"
      devices:
      - name: "vdb"
    - name: "test-vm6.home.lcl"
      devices:
      - name: "vdb"

You might want to change in the above yaml:

  • the number of mon's
    • use an odd number!
    • between 1 and 9
  • node names
  • device names (it could be vdc or sdb in your case..
  1. Apply the cluster configuration
[k8sadm@test-vm1 ~]$ kubectl apply -f cluster.yaml
namespace/rook-ceph created
serviceaccount/rook-ceph-cluster created
role.rbac.authorization.k8s.io/rook-ceph-cluster created
rolebinding.rbac.authorization.k8s.io/rook-ceph-cluster-mgmt created
rolebinding.rbac.authorization.k8s.io/rook-ceph-cluster created
cluster.ceph.rook.io/rook-ceph created
  1. Check the status
[k8sadm@test-vm1 ~]$ kubectl -n rook-ceph get pods
NAME                                            READY     STATUS      RESTARTS   AGE
rook-ceph-mgr-a-77f86598dd-clsqw                1/1       Running     0          5m
rook-ceph-mon-a-c8b6b9c78-f54px                 1/1       Running     0          5m
rook-ceph-mon-b-85c677b6b4-wg9xb                1/1       Running     0          5m
rook-ceph-mon-c-5fbd645bc4-gwq4v                1/1       Running     0          5m
rook-ceph-osd-0-bc94cf68d-tz7pg                 1/1       Running     0          4m
rook-ceph-osd-1-858b858874-bktlk                1/1       Running     0          4m
rook-ceph-osd-2-6c54c75878-m2zpx                1/1       Running     0          4m
rook-ceph-osd-prepare-test-vm4.home.lcl-fdbnx   0/1       Completed   0          5m
rook-ceph-osd-prepare-test-vm5.home.lcl-m2k75   0/1       Completed   0          5m
rook-ceph-osd-prepare-test-vm6.home.lcl-qcqk5   0/1       Completed   0          5m
  1. Install the ceph toolbox
[k8sadm@test-vm1 ~]$ kubectl apply -f  rook/cluster/examples/kubernetes/ceph/toolbox.yaml 
deployment.apps/rook-ceph-tools created

[k8sadm@test-vm1 ~]$ kubectl -n rook-ceph get pods
NAME                                            READY     STATUS      RESTARTS   AGE
rook-ceph-mgr-a-77f86598dd-clsqw                1/1       Running     0          5m
rook-ceph-mon-a-c8b6b9c78-f54px                 1/1       Running     0          5m
rook-ceph-mon-b-85c677b6b4-wg9xb                1/1       Running     0          5m
rook-ceph-mon-c-5fbd645bc4-gwq4v                1/1       Running     0          5m
rook-ceph-osd-0-bc94cf68d-tz7pg                 1/1       Running     0          4m
rook-ceph-osd-1-858b858874-bktlk                1/1       Running     0          4m
rook-ceph-osd-2-6c54c75878-m2zpx                1/1       Running     0          4m
rook-ceph-osd-prepare-test-vm4.home.lcl-fdbnx   0/1       Completed   0          5m
rook-ceph-osd-prepare-test-vm5.home.lcl-m2k75   0/1       Completed   0          5m
rook-ceph-osd-prepare-test-vm6.home.lcl-qcqk5   0/1       Completed   0          5m
rook-ceph-tools-856cd87f69-9tznz                1/1       Running     0          4m
  1. Check the ceph status
[k8sadm@test-vm1 ~]$ kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get pod -l "app=rook-ceph-tools" -o jsonpath='{.items[0].metadata.name}') ceph status
  cluster:
    id:     2afbac2e-0df9-43a5-821a-c08bdbff3584
    health: HEALTH_OK
 
  services:
    mon: 3 daemons, quorum b,c,a
    mgr: a(active)
    osd: 3 osds: 3 up, 3 in
 
  data:
    pools:   0 pools, 0 pgs
    objects: 0 objects, 0 bytes
    usage:   3077 MB used, 289 GB / 292 GB avail
    pgs:
  1. Checl the ceph osd status
[k8sadm@test-vm1 ~]$ kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get pod -l "app=rook-ceph-tools" -o jsonpath='{.items[0].metadata.name}') ceph osd status
+----+----------------------------------+-------+-------+--------+---------+--------+---------+-----------+
| id |               host               |  used | avail | wr ops | wr data | rd ops | rd data |   state   |
+----+----------------------------------+-------+-------+--------+---------+--------+---------+-----------+
| 0  | rook-ceph-osd-0-bc94cf68d-tz7pg  | 1025M | 96.4G |    0   |     0   |    0   |     0   | exists,up |
| 1  | rook-ceph-osd-1-858b858874-bktlk | 1025M | 96.4G |    0   |     0   |    0   |     0   | exists,up |
| 2  | rook-ceph-osd-2-6c54c75878-m2zpx | 1025M | 96.4G |    0   |     0   |    0   |     0   | exists,up |
+----+----------------------------------+-------+-------+--------+---------+--------+---------+-----------+

Now just follow the manual to use ceph:

https://rook.io/docs/rook/master/block.html

[k8sadm@test-vm1 kubernetes]$ kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get pod -l "app=rook-ceph-tools" -o jsonpath='{.items[0].metadata.name}') ceph status
  cluster:
    id:     2afbac2e-0df9-43a5-821a-c08bdbff3584
    health: HEALTH_OK
 
  services:
    mon: 4 daemons, quorum b,c,d,a
    mgr: a(active)
    osd: 3 osds: 3 up, 3 in
 
  data:
    pools:   1 pools, 100 pgs
    objects: 62 objects, 95040 kB
    usage:   3151 MB used, 289 GB / 292 GB avail
    pgs:     100 active+clean
 
  io:
    client:   71023 B/s rd, 5648 kB/s wr, 10 op/s rd, 18 op/s wr

sources:

  1. http://docs.ceph.com/docs/master/dev/kubernetes/
  2. https://rook.io/docs/rook/master/
  3. https://medium.com/@zhimin.wen/deploy-rook-ceph-on-icp-2-1-0-3-63ec16787093

k8s Dashboard installation

Deploy the Dashboard

  1. install the kubernetes dashboard
[k8sadm@test-vm1 ~]$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml

secret "kubernetes-dashboard-certs" created
serviceaccount "kubernetes-dashboard" created
role "kubernetes-dashboard-minimal" created
rolebinding "kubernetes-dashboard-minimal" created
deployment "kubernetes-dashboard" created
service "kubernetes-dashboard" created
  1. Deploy heapster to enable container cluster monitoring and performance analysis on your cluster
[k8sadm@test-vm1 ~]$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/kube-config/influxdb/heapster.yaml

serviceaccount "heapster" created
deployment "heapster" created
service "heapster" created
  1. Deploy the influxdb backend for heapster to your cluster
[k8sadm@test-vm1 ~]$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/kube-config/influxdb/influxdb.yaml

deployment "monitoring-influxdb" created
service "monitoring-influxdb" created
  1. Create the heapster cluster role binding for the dashboard:
[k8sadm@test-vm1 ~]$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/kube-config/rbac/heapster-rbac.yaml

clusterrolebinding "heapster" created

Create an admin Service Account and Cluster Role Binding

  1. Create a file called k8s-admin-service-account.yaml with the text below
apiVersion: v1
kind: ServiceAccount
metadata:
  name: k8s-admin
  namespace: kube-system
  1. Apply the service account to your cluster
[k8sadm@test-vm1 ~]$ kubectl apply -f k8s-admin-service-account.yaml

serviceaccount "k8s-admin" created
  1. Create a file called k8s-admin-cluster-role-binding.yaml with the text below
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
  name: k8s-admin
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
- kind: ServiceAccount
  name: k8s-admin
  namespace: kube-system
  1. Apply the cluster role binding to your cluster
[k8sadm@test-vm1 ~]$ kubectl apply -f k8s-admin-cluster-role-binding.yaml

clusterrolebinding "k8s-admin" created

Connect to the Dashboard

  1. Retrieve an authentication token for the eks-admin service account. Copy the <authentication_token> value from the output. You use this token to connect to the dashboard
[k8sadm@test-vm1 ~]$ kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep k8s-admin | awk '{print $1}')

Name:         k8s-admin-token-b5zv4
Namespace:    kube-system
Labels:       <none>
Annotations:  kubernetes.io/service-account.name=k8s-admin
              kubernetes.io/service-account.uid=bcfe66ac-39be-11e8-97e8-026dce96b6e8

Type:  kubernetes.io/service-account-token

Data
====
ca.crt:     1025 bytes
namespace:  11 bytes
token:      <authentication_token>
  1. Start the kubectl proxy
[k8sadm@test-vm1 ~]$ kubectl proxy

Starting to serve on 127.0.0.1:8001
  1. Open the following link with a web browser to access the dashboard endpoint: http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/

  2. Choose Token, paste the <authentication_token> output from the previous command into the Token field, and choose SIGN IN.


sources:

  1. https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html

Continue with:

  1. K8s rook-ceph Install https://sunwfrk.com/rook-ceph-on-k8s/

k8s master and nodes on RHEL/Centos 7

Configure the master node

Preparation

  1. Run the following commands to pass bridged IP traffic to iptables chains
[root@test-vm1 ~]$ yum update -y
[root@test-vm1 ~]$ modprobe br_netfilter

[root@test-vm1 ~]$ cat <<EOF >  /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
[root@test-vm1 ~]$ sysctl --system

2a) Allow the necessary ports trough the firewall when you're working in an unsafe environment or in production

firewall-cmd --zone=public --add-port=6443/tcp --permanent
firewall-cmd --zone=public --add-port=80/tcp --permanent
firewall-cmd --zone=public --add-port=443/tcp --permanent
firewall-cmd --zone=public --add-port=18080/tcp --permanent
firewall-cmd --zone=public --add-port=10254/tcp --permanent
firewall-cmd --reload

2b) If you're just testing this in a safe lab environment you can disable the firewall.

[root@test-vm1 ~]$ systemctl stop firewalld && systemctl disable firewalld 
  1. Check if selinux is Enabled with the following command
[root@test-vm1 ~]$ sestatus
  1. If the current mode is enforcing then you need to change the mode to permissive or disabled.
[root@test-vm1 ~]$ sed -i --follow-symlinks 's/SELINUX=enforcing/SELINUX=permissive/g' /etc/sysconfig/selinux
[root@test-vm1 ~]$ setenforce 0
  1. Kubernetes doesn't want to use swap so it can offer the best performance, so we have to disable it.
[root@test-vm1 ~]$ swapoff -a
[root@test-vm1 ~]$ vi /etc/fstab

#/dev/mapper/centos-swap swap                    swap    defaults        0 0

6a) Add the kubernetes repository to yum

[root@test-vm1 ~]$ cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF

6b) Add the official docker repo to yum

[root@test-vm1 ~]$ yum remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-selinux docker-engine-selinux docker-engine
[root@test-vm1 ~]$ yum install -y yum-utils device-mapper-persistent-data lvm2
[root@test-vm1 ~]$ yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

Installation

  1. Install kubeadm and docker
[root@test-vm1 ~]$ yum install -y ebtables ethtool docker-ce kubelet kubeadm kubectl
  1. Start docker and enable it at boot
[root@test-vm1 ~]$ systemctl start docker && systemctl enable docker
  1. Start kubelet and enable it at boot
[root@test-vm1 ~]$ systemctl start kubelet && systemctl enable kubelet
  1. Initialize kubernetes. Be aware, for some pod network implementations you might need to add a specific '--pod-network-cidr=' setting. Please check https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#pod-network before continuing.
[root@test-vm1 ~]$ kubeadm init --pod-network-cidr=10.244.0.0/16
I0715 12:50:01.543998    1958 feature_gate.go:230] feature gates: &{map[]}
[init] using Kubernetes version: v1.11.0
[preflight] running pre-flight checks
I0715 12:50:01.577212    1958 kernel_validator.go:81] Validating kernel version
I0715 12:50:01.577289    1958 kernel_validator.go:96] Validating kernel config
[preflight/images] Pulling images required for setting up a Kubernetes cluster
[preflight/images] This might take a minute or two, depending on the speed of your internet connection
[preflight/images] You can also perform this action in beforehand using 'kubeadm config images pull'
[kubelet] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[preflight] Activating the kubelet service
[certificates] Generated ca certificate and key.
[certificates] Generated apiserver certificate and key.
[certificates] apiserver serving cert is signed for DNS names [test-vm1.home.lcl kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 192.168.1.221]
[certificates] Generated apiserver-kubelet-client certificate and key.
[certificates] Generated sa key and public key.
[certificates] Generated front-proxy-ca certificate and key.
[certificates] Generated front-proxy-client certificate and key.
[certificates] Generated etcd/ca certificate and key.
[certificates] Generated etcd/server certificate and key.
[certificates] etcd/server serving cert is signed for DNS names [test-vm1.home.lcl localhost] and IPs [127.0.0.1 ::1]
[certificates] Generated etcd/peer certificate and key.
[certificates] etcd/peer serving cert is signed for DNS names [test-vm1.home.lcl localhost] and IPs [192.168.1.221 127.0.0.1 ::1]
[certificates] Generated etcd/healthcheck-client certificate and key.
[certificates] Generated apiserver-etcd-client certificate and key.
[certificates] valid certificates and keys now exist in "/etc/kubernetes/pki"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/admin.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/controller-manager.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/scheduler.conf"
[controlplane] wrote Static Pod manifest for component kube-apiserver to "/etc/kubernetes/manifests/kube-apiserver.yaml"
[controlplane] wrote Static Pod manifest for component kube-controller-manager to "/etc/kubernetes/manifests/kube-controller-manager.yaml"
[controlplane] wrote Static Pod manifest for component kube-scheduler to "/etc/kubernetes/manifests/kube-scheduler.yaml"
[etcd] Wrote Static Pod manifest for a local etcd instance to "/etc/kubernetes/manifests/etcd.yaml"
[init] waiting for the kubelet to boot up the control plane as Static Pods from directory "/etc/kubernetes/manifests" 
[init] this might take a minute or longer if the control plane images have to be pulled
[apiclient] All control plane components are healthy after 43.502080 seconds
[uploadconfig] storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace
[kubelet] Creating a ConfigMap "kubelet-config-1.11" in namespace kube-system with the configuration for the kubelets in the cluster
[markmaster] Marking the node test-vm1.home.lcl as master by adding the label "node-role.kubernetes.io/master=''"
[markmaster] Marking the node test-vm1.home.lcl as master by adding the taints [node-role.kubernetes.io/master:NoSchedule]
[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" to the Node API object "test-vm1.home.lcl" as an annotation
[bootstraptoken] using token: e8yb38.htt4pz8dmxq77jha
[bootstraptoken] configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials
[bootstraptoken] configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token
[bootstraptoken] configured RBAC rules to allow certificate rotation for all node client certificates in the cluster
[bootstraptoken] creating the "cluster-info" ConfigMap in the "kube-public" namespace
[addons] Applied essential addon: CoreDNS
[addons] Applied essential addon: kube-proxy

Your Kubernetes master has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
  https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of machines by running the following on each node
as root:

  kubeadm join 192.168.1.221:6443 --token e8yb38.hqq4pz9dmlq77jha --discovery-token-ca-cert-hash sha256:50b01f19d8060ba593a009d134912d62b95ca80fdbe76f3995c8ba6c4a92c705
  1. Create admin user
[root@test-vm1 ~]$ groupadd -g 1000 k8sadm
[root@test-vm1 ~]$ useradd -u 1000 -g k8sadm -G wheel k8sadm
[root@test-vm1 ~]$ passwd k8sadm
Changing password for user k8sadm.
New password: 
Retype new password: 
passwd: all authentication tokens updated successfully.
[root@test-vm1 ~]$ su - k8sadm
[k8sadm@test-vm1 ~]$ mkdir -p $HOME/.kube
[k8sadm@test-vm1 ~]$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
[k8sadm@test-vm1 ~]$ sudo chown $(id -u):$(id -g) $HOME/.kube/config
  1. Configure the pod network
[k8sadm@test-vm1 ~]$ kubectl get nodes
NAME                STATUS     ROLES     AGE       VERSION
test-vm1.home.lcl   NotReady   master    2m        v1.11.0
[k8sadm@test-vm1 ~]$ kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
[k8sadm@test-vm1 ~]$ kubectl get nodes
NAME                STATUS    ROLES     AGE       VERSION
test-vm1.home.lcl   Ready     master    3m        v1.11.0
[k8sadm@test-vm1 ~]$ kubectl get pods --all-namespaces
NAMESPACE     NAME                                        READY     STATUS    RESTARTS   AGE
kube-system   coredns-78fcdf6894-g7rg4                    1/1       Running   0          2h
kube-system   coredns-78fcdf6894-vr4xm                    1/1       Running   0          2h
kube-system   etcd-test-vm1.home.lcl                      1/1       Running   1          2h
kube-system   kube-apiserver-test-vm1.home.lcl            1/1       Running   1          2h
kube-system   kube-controller-manager-test-vm1.home.lcl   1/1       Running   1          2h
kube-system   kube-proxy-524ql                            1/1       Running   1          2h
kube-system   kube-scheduler-test-vm1.home.lcl            1/1       Running   1          2h
kube-system   kube-flannel-ds-45d87                       1/1       Running   1          2h
kube-system   kube-flannel-ds-bqh8j                       1/1       Running   1          2h
kube-system   kube-flannel-ds-dfldc                       1/1       Running   1          2h

Configure the worker nodes

  1. Repeat steps 1 to 6 on all worker nodes

  2. Install docker and kubeadm

[root@test-vm2 ~]$ yum install -y kubeadm docker-ce kubelet
[root@test-vm3 ~]$ yum install -y kubeadm docker-ce kubelet
  1. Start docker and enable it at boot
[root@test-vm2 ~]$ systemctl start docker && systemctl enable docker
[root@test-vm3 ~]$ systemctl start docker && systemctl enable docker
  1. Start kubelet and enable it at boot
[root@test-vm2 ~]$ systemctl start kubelet && systemctl enable kubelet
[root@test-vm3 ~]$ systemctl start kubelet && systemctl enable kubelet
  1. Join the workers to the master

use the command kubeadm returned in step 10

[root@test-vm2 ~]$ kubeadm join 192.168.1.221:6443 --token e8yb38.hqq4pz9dmlq77jha --discovery-token-ca-cert-hash sha256:50b01f19d8060ba593a009d134912d62b95ca80fdbe76f3995c8ba6c4a92c705
[root@test-vm3 ~]$ kubeadm join 192.168.1.221:6443 --token e8yb38.hqq4pz9dmlq77jha --discovery-token-ca-cert-hash sha256:50b01f19d8060ba593a009d134912d62b95ca80fdbe76f3995c8ba6c4a92c705
  1. verify the status

after a little while you will see

[k8sadm@test-vm1 ~]$ kubectl get nodes
NAME                STATUS    ROLES     AGE       VERSION
test-vm1.home.lcl   Ready     master    26m       v1.11.1
test-vm2.home.lcl   Ready     <none>    1m        v1.11.1
test-vm3.home.lcl   Ready     <none>    1m        v1.11.1

sources:

  1. https://amasucci.com/post/2017/10/22/how-to-install-kubernetes-1.8.1-on-centos-7.3/
  2. ....
  3. ....

Continue with:

  1. k8s Dashboard Install https://sunwfrk.com/k8s-dashboard-installation/
  2. K8s rook-ceph Install https://sunwfrk.com/rook-ceph-on-k8s/

udev rules for ASM disks

Make sure you have sg3 utils installed.

# yum install -y sg3_utils

After the LUNs were added to the server run:

# rescan-scsi-bus.sh

This will generate a lot of output and will tell you if it found new disks.
If you've received the wwid's from you SAN administrator you can skip this next stept, if not we'll have to figure out what disks were added using:

# dmesg

Record most (if you asked for 2 LUNs with different sizes, you can note 2 disks with both sizes) disks for further reference. I'm noting:

[1808189.173460] sd 0:0:0:9: [sdak] 209715200 512-byte logical blocks: (107 GB/100 GiB)
[1808189.213339] sd 0:0:0:10: [sdal] 104857600 512-byte logical blocks: (53.6 GB/50.0 GiB)

I will assume you have multipath, if you are blacklisting all luns by default you will also need to modify your multipath configuration. I will not cover this here.

now run

# multipath -ll
...
mpathk (36006016056a04000e9113c6d9189e811) dm-21 DGC     ,VRAID
size=50G features='2 queue_if_no_path retain_attached_hw_handler' hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 0:0:0:10 sdal 66:80  active ready running
| `- 1:0:0:10 sdap 66:144 active ready running
`-+- policy='service-time 0' prio=10 status=enabled
  |- 0:0:1:10 sdan 66:112 active ready running
  `- 1:0:1:10 sdar 66:176 active ready running
mpathj (36006016056a04000ea81ef4f9189e811) dm-20 DGC     ,VRAID
size=100G features='2 queue_if_no_path retain_attached_hw_handler' hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 0:0:1:9  sdam 66:96  active ready running
| `- 1:0:1:9  sdaq 66:160 active ready running
`-+- policy='service-time 0' prio=10 status=enabled
  |- 0:0:0:9  sdak 66:64  active ready running
  `- 1:0:0:9  sdao 66:128 active ready running
...

I'm only showing the mpath devices I need. What is now important is the wwid's

  • 36006016056a04000e9113c6d9189e811
  • 36006016056a04000ea81ef4f9189e811

Now we'll edit /etc/udev/rules.d/99-oracle-asmdevices.rules

# vi /etc/udev/rules.d/99-oracle-asmdevices.rules

and add

#100G mpathj asm-data-example
KERNEL=="dm-*", SUBSYSTEM=="block", PROGRAM=="/usr/lib/udev/scsi_id -g -u -d $tempnode", RESULT=="36006016056a04000ea81ef4f9189e811", SYMLINK+="asm-data-example", OWNER="oracle", GROUP="dba", MODE="0660"
 
#50G mpathk asm-fra-example
KERNEL=="dm-*", SUBSYSTEM=="block", PROGRAM=="/usr/lib/udev/scsi_id -g -u -d $tempnode", RESULT=="36006016056a04000e9113c6d9189e811", SYMLINK+="asm-fra-example", OWNER="oracle", GROUP="dba", MODE="0660"

Now, very important, you won't succeed without this:

# partprobe /dev/mapper/mpathk
# partprobe /dev/mapper/mpathj

Last step is to reload the udev config and activate it

# udevadm control --reload-rules
# udevadm trigger --type=devices --action=change

Verify our new devices are created:

# ls -lrt /dev/asm*example

lrwxrwxrwx. 1 root root 5 Jul 17 10:38 /dev/asm-fra-example -> dm-21
lrwxrwxrwx. 1 root root 5 Jul 17 10:38 /dev/asm-data-example -> dm-20
Older Posts